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Square-Root Formulas for Kalman Filter,
Information Filter, and RTS Smoother:
Links via Boomerang Prediction Residual

Toshio Michael Chin∗

ABSTRACT. — A self-contained derivation of several square-root filter and smoother formulas
is presented. The formulas include square-root versions of the Kalman filter,
Rauch-Tung-Striebel (RTS) smoother, and Dyer-McReynolds Covariance Smoother (DMCS),
along with the square-root information filter (SRIF). A stabilized version of the RTS smoother
is also included. While most of the presented formulas have been independently derived and
well documented, this presentation takes an unified approach through a random process named
boomerang prediction residual, which simplifies both the derivations and formulas.

I. Introduction

Since its first application to aerospace navigation and guidance in 1960s, the Kalman filter has
become a common numerical tool in a wide range of applications for tracking the state of a
dynamic system based on incomplete and noisy observations. From the beginning, algebraic
realizations of the filter algorithm played a key role in successful applications, as the legendary
invention of the square-root filter enabled onboard deployment for the Apollo missions [1].
The square-root version significantly reduces round-off errors from digitization that can cause
filter failure. While the principal formulations for the square-root Kalman filter had mostly
been established by the mid-1970s [2, 3, 4], research on the square-root algorithms continued
along with advances in computational technology, including dedicated hardware for Kalman
filters [5] and method for parallel and distributed computing [6]. More recently, Kalman filter
implementations can rely on highly optimized linear algebra software packages such as
LINPACK/LAPACK [7]. Use of the QR-factorization, in particular, is seen often in
square-root filter implementations [8, 9].
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This note presents a set of square-root realizations for the Kalman filter as well as the
Rauch-Tung-Striebel (RTS) smoother [10], which produces the fixed-interval smoothing
estimates by retrospectively upgrading the Kalman filter results. Development here has been
motivated by applications to space geodetic data for terrestrial reference frame estimation
[11, 12] in which the variance estimates are susceptible to becoming negative due to digital
round-offs. Generally, the standard Kalman filter and RTS smoother formulas share a
weakness in preserving numerical positive semi-definiteness in their covariance matrix
estimates. Addressing such an algorithmic weakness is a focal point of this note. The
square-root Kalman filter algorithms presented here are not new and are well documented
[3, 13, 14]. The accompanying square-root RTS smoother algorithm, on the other hand,
appears to have a simpler algebraic form than the existing ones [15] due partly to a new
derivation presented here. The smoother works well in tandem with either the square-root
Kalman filter or the square-root information filter (SRIF) [16]. The filter and smoother
algorithms here can be executed using only the standard LAPACK/BLAS linear algebra
subroutines for the QR and Cholesky factorizations and for triangular matrix inversion and
multiplication. The presentation is intended for general filtering and smoothing problems
beyond the target applications.

II. Background

Filtering and smoothing are sequential estimation of a stochastic process xt based on its
observations yt indexed by time t = 1, . . . , T . The original Kalman filter algorithm caters to
the linear stochastic dynamics and observation equations of the form

xt+1 = Ftxt + wt (1)

yt = Htxt + vt (2)

given Ft, Ht, x1 ∼
(
x̄1, P̄1

)
, wt ∼ ( q̄t, Qt ), and vt ∼ ( 0, Rt ), where “a ∼ ( b, C )”

denotes that “the random vector a has mean b and covariance matrix C”. The random vectors
x1, wt, and vt are assumed to be mutually independent for all t.

The mean q̄t can become non-zero if the stochastic process has a forcing or control input. The
zero-mean condition of q̄t = 0 and x̄1 = 0, however, can be assumed without any loss of
generality, since xt and yt from (1, 2) can be considered as the perturbation about the mean
state trajectory x̄t (computed as x̄t+1 = Ftx̄t + q̄t given x̄1) and simulated observation
ȳt ≡ Htx̄t according to the common practice known as the Extended Kalman filter [13, 17].
The zero-mean condition also facilitates development of square-root algorithms and is
assumed throughout this presentation.

The filter and smoother seek the optimal estimate of the dynamic state xt as a linear function
of the observations yt. Optimality is defined by the least mean-squares error condition
(Appendix II.A). For brevity, we adopt the notations found in [16, 18] for the state estimates:
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x∼
t ≡ L[xt|y1, . . . , yt−1 ] = x̂t|t−1 : pre-update prediction

x◦
t ≡ L[xt|y1, . . . , yt ] = x̂t|t : filtered estimate

x?t ≡ L[xt|y1, . . . , yT ] = x̂t|T : smoothed estimate

(3)

where L[a|b] denotes “the linear function of b that optimally estimates a” and the associated
estimation error covariance matrices:

P∼
t ≡ E [(xt − x∼

t )(xt − x∼
t )>] = Pt|t−1 : pre-update error covariance

P ◦
t ≡ E [(xt − x◦

t)(xt − x◦
t)
>] = Pt|t : filter error covariance

P ?
t ≡ E [(xt − x?t )(xt − x?t )>] = Pt|T : smoother error covariance

(4)

where E denotes the expectation operator.1 If x1, wt, and vt all have Gaussian distributions,
the optimal linear estimator is also the conditional mean (Appendix II.A) so that each L in (3)
could be replaced by the expectation operator E . For reference only, the third columns of (3, 4)
show notations common in the literature under such a Gaussian assumption [13].

For further brevity, we omit the time index unless the time is other than t. From here on, any
variable without a subscript can be assumed to be implicitly indexed by t (except for the
identity matrix I). Also, the superscripts >, -1, and -> respectively denote the transpose,
inverse, and transposed-inverse of a matrix. The standard Kalman filter equations can then be
written as

Y = HP∼H> +R (5)

K = P∼H>Y -1 (6)

x◦ = x∼ +K(y −Hx∼) (7)

P ◦ = P∼ −KYK> (8)

x∼
t+1 = Fx◦ (9)

P∼
t+1 = FP ◦F> +Q (10)

where K is often called the Kalman gain and Y is the covariance matrix associated with the
innovation process defined as ηt ≡ yt −Htx

∼
t . The recursions are initialized as x∼

1 = 0 and
P∼
1 = P̄1. The data update steps (5–8) revise the estimate-covariance pair based on the new

observation (2), while the time update steps (9, 10) do so based on the dynamics (1).

The RTS smoother equations are initialized by the final filter estimates
( x?T , P

?
T ) = ( x◦

T , P
◦
T ) and iterate backward in time t = T − 1, T − 2, . . . , 1 as

S = P ◦F>(P∼
t+1) -1 (11)

x? = x◦ + S(x?t+1 − x∼
t+1) (12)

P ? = P ◦ − S(P∼
t+1 − P ?

t+1)S> (13)

1Given the probability density function p(x) and a generic function q(x) for a random vector x, E[q(x)] =∫
q(x) p(x) dx where the integral is taken over the entire domain of x.
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where St will be referred to as the smoother gain. Tables 1–3 summarize the standard filter
and smoother formulas.

A well-known weakness in these formulas is that subtractions of one covariance matrix from
another, which appear in (8) and (13), are vulnerable to digital round-offs that may make the
difference matrix non-definite, violating the fundamental characteristic of a covariance matrix
to be positive semi-definite and leading often to swift divergence from optimality.

III. Stabilized Forms

The covariance formulas (8, 13) can be altered into “stabilized forms” to replace the
numerically vulnerable covariance differences with quadratic terms. A stabilized form of RTS
covariance recursion (13), rare or absent in the literature, is presented here. Its derivation
depends on the introduction of a process labeled here as “the boomerang prediction residual,”
which reappears prominently in the square-root forms of the Kalman filter and RTS smoother
presented later.

A. Joseph Stabilized Form

The Kalman filter data-update formula (7) can be written for the estimation error xt − x◦
t as

x− x◦ = x− x∼ −K(y −Hx∼)

= x− x∼ −KH(x− x∼)−Kv

= (I −KH)(x− x∼)−Kv.

Since the prior estimation error xt − x∼
t is setup to be independent from the observation error

vt,

P ◦ = E [(x− x◦)(x− x◦)>]

= (I −KH)P∼(I −KH)> +KRK> (14)

which is the Joseph stabilized form [18] that can impose positive semi-definiteness on P ◦
t

through its algebraic form that, unlike (8), contains no difference between covariance matrices.
The computational cost can be significantly higher with (14) than (8) due to an increase in
matrix multiplications.

B. Boomerang Prediction Residual

Define δt ≡ xt − Stxt+1 to be the boomerang prediction residual process.2 Its estimate based
on the filter data set {y1, . . . , yt} is denoted as δ◦

t and given by

δ◦ = x◦ − Sx∼
t+1 (15)

2Stxt+1 can be considered as a hindcast of xt based on xt+1, which in turn is a forecast based on xt itself.
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Table 1. Filter parameters from the system equations

Filter parameter Source

Ft State transition matrix xt+1 = Ftxt + wt

Ht Observation matrix yt = Htxt + vt

Qt Process noise covariance wt ∼ (0, Qt)

Rt Observation noise covariance vt ∼ (0, Rt)

P̄1 Initial state covariance x1 ∼ (0, P̄1)

T Time (index) interval t = 1, 2, . . . T

Table 2. Variables in the filter/smoother recursions

State estimate Type Estimation error covariance

x∼
t ≡ L[xt|y1, . . . , yt−1 ] Pre-update prediction P∼

t ≡ E(xt − x∼
t )(xt − x∼

t )>

x◦
t ≡ L[xt|y1, . . . , yt ] Filtered estimate P ◦

t ≡ E(xt − x◦
t)(xt − x◦

t)
>

x?t ≡ L[xt|y1, . . . , yT ] Smoothed estimate P ?
t ≡ E(xt − x?t )(xt − x?t )>

Table 3. A summary of standard Kalman filter and RTS smoother equations

Kalman Filter RTS Smoother

Initializations x∼
1 = 0, P∼

1 = P̄1 x?T = x◦
T , P ?

T = P ◦
T

Recursions ( for t = 1, 2, . . . , T ) ( for t = T−1, T−2, . . . , 1 )

Yt = HtP
∼
t H

>
t +Rt St = P ◦

t F
>
t (P∼

t+1) -1

Kt = P∼
t H

>
t Y

-1
t x?t = x◦

t + St(x
?
t+1 − x∼

t+1)

x◦
t = x∼

t +Kt(yt −Htx
∼
t ) P ?

t =P ◦
t − St(P

∼
t+1−P ?

t+1)S>t

P ◦
t = P∼

t −KtYtK
>
t

x∼
t+1 = Ftx

◦
t

P∼
t+1 = FtP

◦
t F
>
t +Qt

5



and the associated error covariance matrix is denoted as ∆◦
t and given by

∆◦ = E [(δ − δ◦)(δ − δ◦)>]

= (I − SF )P ◦(I − SF )> + SQS> (16)

whose derivation is through the estimation error

δ − δ◦ = (x− x◦)− S(xt+1 − x∼
t+1)

= (x− x◦)− S(Fx+ w − Fx◦)

= (I − SF )(x− x◦)− Sw

expressed in terms of mutually independent xt and wt.

Lemma III.1. The filter error for the boomerang prediction residual is uncorrelated to all
future smoother error, or E [(δt − δ◦

t )(xt+j − x?t+j)
>] = 0 for j = 1, . . . , T− t.

Proof: For each j in j = 1, . . . , T− t.

E [(δ − δ◦)(xt+j − x?t+j)
>] = E [{(x− x◦)− S(xt+1 − x∼

t+1)}(xt+j − x?t+j)
>]

= E [{(x− x◦)− S(xt+1 − x∼
t+1)}(xt+j − x∼

t+j)
>(W f

t+j)
>]

= P ◦F> · F j
1 (W f

t+j)
> − SP∼

t+1 · F
j
1 (W f

t+j)
>

= 0 (17)

where F j
1 ≡ I for j = 1 and is the product F>t+1 · · ·F>t+j−1 for j > 1, the second equality

is due to (49–51) from Appendix II.C, eachW f
t+j is a constant matrix, and the last equality

is due to (11).

By the orthogonality principle [19], Lemma III.1 implies that the boomerang prediction
residual process provides independent (additive) data to the smoother estimates during
backward recursion.

C. Stabilized RTS Smoother

The RTS equation for the smoother estimate (12) can be rewritten as a recursion driven by the
filtered estimate δ◦

t of the boomerang prediction residual as

x? = Sx?t+1 + δ◦. (18)

The smoother error can then be expressed in terms of the two mutually independent processes
from Lemma III.1 as

x− x? = S(xt+1 − x?t+1) + (δ − δ◦)

which, helped by (17), leads to a recursion for the smoother error covariance matrix

P ? = SP ?
t+1S

> + ∆◦. (19)

Substitution of (16) into (19) leads to a stabilized RTS smoother covariance recursion

P ? = S(P ?
t+1 +Q)S> + (I − SF )P ◦(I − SF )> (20)

which, unlike (13), is free from differencing two positive semi-definite matrices.
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IV. Square-root Covariance Filter and Smoother

The Kalman filter covariance recursion (5, 6, 8, 10) is independent from the state estimate
recursion (which in contrast is dependent on the covariance recursion through the gain matrix).
The same is true for the RTS smoother covariance recursion (11, 13). The classical approach
to square-root filter and smoother is to perform these covariance recursions with a square-root√
P of the covariance matrix P , defined here as a square matrix such that

√
P
√
P
>

= P .
Using existing software packages, Cholesky factorization of P usually yields

√
P in a

lower-triangular form. If P is singular, Cholesky factorization fails, and finding
√
P requires a

more sophisticated routine such as Matlab’s sqrtm [20].

A. Data Update

Consider updating a given estimate-covariance pair (x∼
t , P

∼
t ) with the observation given as

(2). The joint distribution of the observation and state vectors then becomes[
y

x

]
∼

( [
Hx∼

x∼

]
,

[
Y HP∼

P∼H> P∼

] )
(21)

whose (joint) mean vector and covariance matrix provide the ingredients for the textbook
formulas for the optimal linear estimator of xt given yt, which are the Kalman filter
data-update formulas (7, 8). In particular, given the joint covariance matrix, the formula (8) for
the data-updated covariance P ◦

t is the Schur complement of Yt (Appendix II.A).

Keys to the square-root filter algorithms are that two different square-roots of the same
(symmetric) matrix are related by a unitary transform (Appendix I.A) and that square-root
factors with (block) triangular matrix structures can produce a Schur complement
(Appendix I.B). In particular, the joint covariance matrix in (21) can be factored individually
as A>1 A1 and B>1 B1 by the square-root matrices

A>1 ≡
[ √

R H
√
P∼

0
√
P∼

]
, B>1 ≡

[ √
Y 0

K
√
Y
√
P ◦

]

where A>1 contains only the given parameters and the lower-triangular B>1 exposes the desired
parameters including the square-root Schur complement

√
P ◦
t for the data-updated square-root

covariance matrix. Since B1 has an upper triangular structure, applying the QR factorization
to A1 would yield B1. Some linear algebra packages including LAPACK offer “LQ
factorization”, an alternate of QR factorization, that transforms A>1 directly to the
lower-triangular B>1 .

The Kalman gain can also be derived from the left column of B>1 . Explicit computation for Kt

is not necessary for the state estimate update

x◦ = x∼ − (K
√
Y ) · (

√
Y ) -1(y −Hx∼) (22)

since the vector (
√
Y ) -1(y −Hx∼) can be computed first via back-substitution with the

upper-triangular
√
Y and then be multiplied by K

√
Y extracted from B>1 .
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B. Time Update and Smoother Parameters

The covariance time-update formula (10) is a sum of two symmetric matrices, which can be
expressed as B>2fB2f = A>2fA2f by the square-root factors

A>2f ≡
[ √

Q F
√
P ◦

]
, B>2f ≡

[ √
P∼
t+1 0

]
.

An LQ or QR factorization can transform A>2f to the lower-triangular B>2f , from which the
desired

√
P∼
t+1 can be extracted.

If the smoother estimates are desired in addition, the equation of dynamics (1) can be
considered as an “observation” of xt by xt+1. This perspective is relevant to smoothing
because the retrospective (backward time) estimate of xt given xt+1 is statistically independent
from the causal (forward time) prediction of xt based on x◦

t−1 due to the Markov property of
the state-space model (Appendix II.C). Because (1) and (2) have similar algebraic forms, the
square-root procedure developed for the data-update using (2) should be applicable to the
time-update using (1) as well.3 In particular, an analogue of (21) would be the joint distribution[

xt+1

xt

]
∼

( [
Fx◦

x◦

]
,

[
P∼
t+1 FP ◦

P ◦F> P ◦

] )
(23)

whose joint covariance matrix has two square-root factors:

A>2 ≡
[ √

Q F
√
P ◦

0
√
P ◦

]
, B>2 ≡

[ √
P∼
t+1 0

S
√
P∼
t+1

√
∆◦

]

where the top rows of A>2 and B>2 are A>2f and B>2f , respectively, and ∆◦
t is the error

covariance matrix (16) for the boomerang prediction residual process δt. Expansion of (16)
leads to a simpler form

∆◦ = P ◦ − SFP ◦ − P ◦F>S> + SP∼
t+1S

>

= P ◦ − SP∼
t+1S

> − SP∼
t+1S

> + SP∼
t+1S

>

= P ◦ − SP∼
t+1S

> (24)

which equals to P ◦
t − P ◦

t F
>
t P

∼
t+1FtP

◦
t or the Schur complement of P∼

t+1 in the joint
covariance matrix of (23). An LQ or QR factorization could transform A>2 , containing only
the prior parameters, to the lower triangular B>2 . The left block column of B>2 yields the RTS
smoother gain as

S =
(
S
√
P∼
t+1

)
·
√
P∼
t+1

-1
(25)

which is to be stored along with
√

∆◦
t for the smoother recursion. The boomerang prediction

residual estimate δ◦
t is also computed (15) and stored.

3Note also the analogous algebraic forms for Kt and St in (6, 11), as well as for Yt and P∼
t+1 in (5, 10). However,

actual observation of xt+1 is not available during the filter time update. A value x?t+1 becomes available only during
the backward smoother recursion.
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C. Smoothing

The stabilized smoother recursions (18, 19) can be identified in algebraic form as the
Dyer-McReynolds Covariance Smoother (DMCS) [16]. DMCS, in turn, is identical to the RTS
smoother. In particular, substitutions of (15) and (24) into (18) and (19), respectively, lead to
the RTS recursions (12) and (13). The DMCS recursions (18, 19) are thus considered
equivalent to the RTS recursions.

The smoother covariance recursion (19) can be expressed as B>3 B3 = A>3 A3 by the factors

A>3 ≡
[
S
√
P ?
t+1

√
∆◦
]
, B>3 ≡

[ √
P ?
t 0

]

where St and
√

∆◦
t in A>3 are from the filter time-update. Again, an LQ or QR factorization

can transform A>3 to the lower-triangular B>3 .

Unlike its Kalman filter counterpart (7, 9), the smoother state-estimate recursion (18) is
independent from the accompanying covariance recursion (19). The LQ or QR factorization
for
√
P ?
t can then be skipped if only the smoothed estimate x?t is desired.

V. Filter and Smoother with Square-root Pair

The state-estimates can be co-updated with the square-root covariance if the pre-transform
matrices A1, A2, and A3 are augmented by a single vector each. A single QR factorization
can hence update both the error covariance matrix and state-estimate vector at each recursion
step. The quantity that can be updated in such an arrangement is the square-root pair defined
as (
√
P
>
, b̄) for a given estimate-covariance pair (x̄, P ) where x̄ =

√
P b̄. In particular, b∼t

and b◦t , which will be called the companion vectors, are defined to encode the state estimates as
x∼
t =

√
P∼
t b

∼
t and x◦

t =
√
P ◦
t b

◦
t .

Lemma V.1. Given the system equations (1, 2), the companion vectors b∼t and b◦t can exist if
x̄1 ∈ range(P̄1) and q̄t ∈ range(Qt) for all t.

Proof: Existence of b∼t and b◦t is equivalent to x∼
t ∈ range(P∼

t ) and x◦
t ∈

range(P ◦
t ). Suppose x∼

t ∈ range(P∼
t ), then from (6, 7) x◦

t ∈ range(P∼
t ) and from

(6, 14) range(P ◦
t ) = range(P∼

t ). Thus x◦
t ∈ range(P ◦

t ). Then from (9) x∼
t+1 ∈

range(Ft

√
P∼
t )∪range(Qt) and from (10) range(P∼

t+1) = range(Ft

√
P∼
t )∪range(Qt).

Thus x∼
t+1 ∈ range(P∼

t+1). The lemma must then be true by induction, noting that
x∼
1 = x̄1, P∼

1 = P̄1, and x̄1 ∈ range(P̄1).

The requirements on x̄1 and q̄t can be satisfied by the zero-mean condition assumed here (or,
alternatively, by assuming that P̄1 and Qt are all non-singular, a less flexible assumption in
practice). Lemma V.1 guarantees the existence of the state square-root pair under the
zero-mean condition (x̄1 = 0, q̄t = 0).
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A. Data Update of Square-root Pair

The state estimate can be updated jointly with the square-root covariance in the form of the
square-root pair. To this end, the joint covariance matrix is augmented by the given innovation
ηt ≡ yt −Htx

∼
t and estimate x∼

t vectors as[
Y HP∼ −η

P∼H> P∼ x∼

]
(26)

which can be factorized as both A>1 A1x and B>1 B1x where

A1x ≡

[ √
R
>

0 −
√
R

-1
y

√
P∼
>
H>

√
P∼
>

b∼

]
, B1x ≡

[ √
Y
> √

Y
>
K> −

√
Y

-1
η

0
√
P ◦
>

b◦

]

which are vector augmented versions of the square-root matrices A1 and B1 respectively. The
prior (

√
P∼
t

>
, b∼t ) and posterior (

√
P ◦
t

>
, b◦t) square-root pairs appear in the lower-right

blocks of A1x and B1x, respectively. Since B1x is upper triangular, the data-update of the
square-root pair could be performed by a single QR factorization that transforms A1x to B1x.
A multiplication by the triangular square-root matrix

[ P ◦, x◦ ] =
√
P ◦ ·

[ √
P ◦
>
, b◦

]
(27)

would retrieve the filtered estimate-covariance pair from the square-root pair. This
multiplication step is optional for applications seeking only the smoothed estimates (e.g.,
[11, 12]).

B. Time Update of Square-root Pair

If the joint covariance matrix in (23) is augmented to its right by its accompanying joint mean
vector, the augmented matrix could be factored as A>2 A2x and B>2 B2x where

A2x ≡

[ √
Q
>

0 0
√
P ◦
>
F>

√
P ◦
>

b◦

]
, B2x ≡

[ √
P∼
t+1
> √

P∼
t+1
>
S> b∼t+1

0
√

∆◦
>

d◦

]

and (
√

∆◦
t

>
, d◦

t) is the square-root pair such that δ◦
t =

√
∆◦

td
◦
t for the boomerang prediction

residual estimate-covariance pair (δ◦
t , ∆◦

t) given by (15, 24). As before, the prior (
√
P ◦
t

>
, b◦t)

is used to construct A2x, which can be QR-factorized into the upper triangular B2x, from
which the time-updated posterior (

√
P∼
t+1
>
, b∼t+1) is extracted along with the smoother

parameters St and (
√

∆◦
t

>
, d◦

t) as needed. The RTS smoother gain St needs to be computed
via back-substitutions

S> =
( √

P∼
t+1

) -1
·
( √

P∼
t+1S

>
)

(28)

where the transposed form S>t will be seen to fit directly into the square-root smoother. If only
the filter results are desired, the second block columns of A2x and B2x can be removed to
bypass the computation of the smoother parameters.
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C. Smoothing

If the covariance matrix from each side of the DMCS covariance recursion (19) is augmented
to its right by the corresponding vector from each side of the DMCS estimate recursion (18),
the augmented matrices can be factored as A>3 A3x and B>3 B3x where

A3x ≡

[ √
P ?
t+1
>
S> b?t+1√

∆◦
>

d◦

]
, B3x ≡

[ √
P ?
t

>
b?t

0 0

]

which are, as before, related via a QR factorization and used for recursion of the smoothed
square-root pair. The initial square-root pair (

√
P ?
T

>
, b?T ) can directly be extracted from B1x

as (
√
P ◦
T

>
, b◦T ). Again, a triangular matrix multiplication

[ P ?, x? ] =
√
P ? ·

[ √
P ?
>
, b?

]
(29)

is needed to retrieve the smoothed estimate-covariance pair from the square-root pair.

VI. Square Root Information Filter

The square-root information filter (SRIF) [16] is a different form of square-root Kalman filter.
The recursions of SRIF are based not on the covariance matrix but on its inverse, called the
information matrix. Consequently, SRIF does not require an initial condition for its recursions,
a potential advantage in applications where the initial estimate-covariance pair is not available
and is arbitrarily created for the sake of filtering [11, 12]. On the other hand, SRIF requires all
system covariance matrices including Qt and Rt to be invertible, potentially restricting its
applicability.

The native form for stochastic dynamics in SRIF is the backward difference equation

Btxt+1 = xt + Ctwt (30)

which is typically derived from the original dynamics (1) by assuming that Ft is invertible [16]
so that Bt ≡ F -1

t for all t. No such assumption is necessary, however, when the stochastic
model is expressed directly in terms of the backward state transition matrix Bt. The noise
modulator matrix Ct is useful for maintaining invertibility of Qt when Ctwt has a singular
covariance matrix.

Instead of the square-root pair, SRIF iterates the square-root information (SRI) pair consisting
of an upper-triangular SRI matrix U and SRI vector b. For a random vector x ∼ ( x̄, P ), the
SRI pair defines its mean and covariance implicitly as Ux̄ = b and UPU> = I , from which
the mean-covariance pair can be recovered as P = (U>U) -1 and x̄ = U -1b =

√
P b if U is

invertible. Such an implicit representation permits the filter recursion to continue even in
situations where the information matrix U>U is singular (rank deficient) so that P cannot exist
numerically. While such situations occur often with incomplete observations (in absence of the
initial condition P̄1), the singularity could eventually be resolved through integration of more
observations if the filter recursion is allowed to proceed. Note that the SRI vector b is identical
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to the companion vector from the square-root pair representation when both
√
P and U exist.

By Lemma V.1, the zero-mean condition (x̄1 = 0, q̄t = 0) would guarantee existence of the
SRI pair and hence the feasibility of using SRIF. The SRI pair constrains x through the
observation equation

b = Ux+ ν, ν ∼ ( 0, I )

associated with the normal equation U>Ux̄ = U>b that specifies the maximum likelihood
estimate x̄ implicitly (Appendix II.B).

A. SRIF Data Update

In the data update step of the SRIF algorithm, the given SRI pair (U∼
t , b

∼
t ) is updated with the

new observation (2). A joint observation equation for xt is formed by combining the
observation equation implied by (U∼

t , b
∼
t ) with (2):[

b∼

y

]
=

[
U∼

H

]
x+

[
ν

v

]
(31)

where νt ∼ ( 0, I ). The desired update x◦
t is the maximum likelihood estimate based on the

joint observation (31), which constrains the estimate through the normal equation

(U∼>U∼ +H>R -1H)x◦ = U∼>b∼ +H>R -1y. (32)

On the other hand, the updated SRI pair (U◦
t , b

◦
t) implies the normal equation

U◦>U◦x◦ = U◦>b◦

which is required to be identical to the derived normal equation (32), leading to the equation in
a matrix-vector aggregated form[

(U∼>U∼ +H>R -1H), (U∼>b∼ +H>R -1y)
]

=
[

(U◦>U◦), (U◦>b◦)
]

whose two sides can be factored as A>4 A4x = B>4 B4x where

A4x ≡

[
U∼ b∼

√
R
−1
H
√
R
−1
y

]
, B4x ≡

[
U◦ b◦

0 0

]
,

and A4 and B4 are given by the first block columns of A4x and B4x. Since B4x is upper
triangular, (U∼

t , b
∼
t ) can be updated to (U◦

t , b
◦
t) by transforming A4x into B4x via QR

factorization after forming A4x with the given parameters.

B. SRIF Time Update

The backward form (30) of the dynamics allows wt and xt to be expressed as linear
combinations of wt and xt+1 as[

I 0

−C B

][
wt

xt+1

]
=

[
wt

xt

]

12



which in turn allows forming a joint observation equation for wt and xt+1 using the known
SRI pairs for wt and xt as[

0

b◦

]
=

[ √
Q

-1
0

0 U◦

][
I 0

−C B

][
wt

xt+1

]
+

[
νw

νx

]
(33)

where νwt ∼ (0, I) and νxt ∼ (0, I) are mutually independent. The normal equation for (33) is[
I −C>

0 B>

][
Q−1 0

0 U◦>U◦

][
I 0

−C B

][
wt

xt+1

]
=

[
I −C>

0 B>

][
0

U◦>b◦

]

whose coefficients from both sides are used to form the matrix-vector aggregate:[
Q -1 + C>U◦>U◦C −C>U◦>U◦B −C>U◦>b◦

−B>U◦>U◦C B>U◦>U◦B B>U◦>b◦

]
(34)

which can be factored in two ways as A>5 A5x and B>5 B5x where

A5x ≡

[ √
Q

-1
0 0

−U◦C U◦B b◦

]
, B5x ≡

[
Γ Ξ γ

0 U∼
t+1 b∼t+1

]

and A5 and B5 are given by the first two block columns of A5x and B5x. Due again to the
upper triangular structure of B5x, the QR factorization can transform A5x into B5x from
which the time-updated SRI pair (U∼

t+1, b
∼
t+1) can be extracted.

The familiar smoother recursion parameters would emerge if the top row of B5x, consisting of
Γt, Ξt, and γt, is left-multipled by

√
∆◦

t as

√
∆◦ · [ Γ, Ξ, γ ] = [ C, (S −B), −δ◦ ] . (35)

In particular,
√

∆◦
t itself can be computed via inversion of the upper-triangular Γt as

√
∆◦ = C Γ -1 (36)

and the remaining parameters required for the square-root covariance smoother (Section IV.C)
can be derived as

S =
√

∆◦ Ξ +B (37)

δ◦ = −
√

∆◦ γ (38)

which are stored for the smoother recursions. The SRIF parameters (Γt,Ξt, γt) can be ignored
if smoothed estimates are not desired.

The remainder of this section focuses on derivation of the three components of the matrix
equation (35). For simplicity, the filtered information matrix L◦

t ≡ U◦
t
>U◦

t is assumed to be
invertible so that P ◦

t = L◦
t

-1 exists. (Another derivation is necessary to include a singular L◦
t .)

The starting point is the backward state transition equation (30), which is rewritten using
Ft = B -1

t as xt+1 = Ftxt + FtCtwt so that the forecast covariance is given as

13



P∼
t+1 = Ft(P

◦
t + CtQtC

>
t )F>t . Since (P∼

t+1) -1 = F ->
t (P ◦

t + CtQtC
>
t ) -1Bt, the RTS

smoother gain formula (11) can be written as

S = P ◦(P ◦ + CQC>) -1B

= [I − CQC>(P ◦ + CQC>) -1]B

= [I − C(Q -1 + CL◦C>) -1C>L◦]B (39)

where the last equality is due to formulas from the Block Matrix Inversion Lemma. On the
other hand, the filtered covariance for the boomerang prediction residual in (24) can be written
as ∆◦ = P ◦ − SFP ◦ = (I − SF )P ◦, and substituting (39) into the last expression would lead
to

∆◦ = [I − I + C(Q -1 + CL◦C>) -1C>L◦]P ◦

= C(Q -1 + CL◦C>) -1C>. (40)

Defining Q◦ ≡ (Q -1 + CL◦C>) -1 and
√
Q◦
√
Q◦> = Q◦ would then lead to

∆◦ = CQ◦C>,
√

∆◦ = C
√
Q◦. (41)

Also, substituting (40) back into (39) would reveal

S = B −∆◦L◦B. (42)

Now, each block of B>5 B5x is matched with the corresponding block of (34). Matching the
top-left blocks yields Γ>Γ = Q◦ -1 leading to Γ -> =

√
Q◦> and Γ -1 =

√
Q◦, the latter of

which is substituted into (41) to prove that
√

∆◦Γ = C, the first of three objectives here.
Matching the top-middle blocks yields Γ>Ξ = −C>L◦B, which leads to√

∆◦Ξ = −
√

∆◦Γ ->C>L◦B = −∆◦L◦B = S −B from (42), completing the second
objective. Matching the top-right vectors yields Γ>γ = −C>U◦>b◦, leading to√

∆◦γ = −
√

∆◦Γ ->C>U◦>b◦ = −∆◦U◦>b◦ = −δ◦ since from (15) and (42)
δ◦ = (I − SF )x◦ = [I − (I −∆◦L◦)BF ]x◦ = ∆◦L◦x◦ = ∆◦U◦>b◦. This completes the
third and final objective.4

C. Square-root DMCS

The DMCS algorithm was originally introduced to accompany SRIF [16]. The parameters St

and δ◦
t generated during the SRIF time-update via (37, 38) would enable the smoother estimate

recursion (18). The parameters St and
√

∆◦
t , by (36), would prepare A>3 for the square-root

smoother error covariance recursion. To initialize the recursions as x?T = U◦
T

-1b◦T and√
P ?
T = U◦

T
-1, the upper-triangular U◦

T must be invertible.

4To match the bottom-middle and bottom-right blocks, the Schur complement and associated vector transform formulas
yield U∼

+
>U∼

+ = B>L◦B − B>L◦∆◦L◦B and U∼
+

>b∼+ = B>U◦>b◦ − B>L◦∆◦U◦>b◦, which are then
complemented by Ξ>Ξ = B>L◦∆◦L◦B and Ξ>γ = B>L◦∆◦U◦>b◦ so that U∼

+
>U∼

+ = B>L◦B−Ξ>Ξ and
U∼
+

>b∼+ = B>U◦>b◦ − Ξ>γ.
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VII. Combined Data and Time Update

The filtered square-root covariance can be updated directly from
√
P ◦
t to

√
P ◦
t+1, along with

the companion vector from b◦t to b◦t+1 as desired, by combining the time and data update
procedures in tandem. For such purposes, consider the joint distribution

−η+
x+

x

 ∼


H+x

∼
+ − y+
x∼
+

x◦

 ,


Y+ H+P
∼
+ H+FP

◦

P∼
+H

>
+ P∼

+ FP ◦

P ◦F>H>+ P ◦F> P ◦




where the subscript “+” denotes “t+1” for brevity. The joint covariance matrix has the
following two square-root factors

A>21 ≡


√
R+ H+

√
Q H+F

√
P ◦

0
√
Q F

√
P ◦

0 0
√
P ◦

 , B>21 ≡


√
Y+ 0 0

K+

√
Y+

√
P ◦
+ 0

SK+

√
Y+ S

√
P ◦
+

√
∆◦


which can be used for updating the square-root covariance matrix. Also, the covariance-mean
aggregate from the joint distribution can be factored as A>21A21x and B>21B21x where

A21x ≡


−
√
R+

-1
y+

A21 0

b◦

 , B21x ≡


−
√
Y+

-1
η+

B21 b◦+

d◦

 ,
which can be used for updating the square-root pair. The last rows of A>21 and B>21 can be
removed if the smoothed estimates are not needed.

The SRI-pair can similarly be updated directly from (U◦
t , b

◦
t) to (U◦

t+1, b
◦
t+1) using the

observation equation that combines (33) with (31):
0

b◦

y+

 =


−I 0

−U◦C U◦B

0 H+


[

w

x+

]
+


w

ν◦

v+


leading to the normal equation:[
Q -1 + C>U◦>U◦C −C>U◦>U◦B

−B>U◦>U◦C B>U◦>U◦B +H>+R
-1
+ H+

][
w◦

x◦
+

]
=

[
−C>U◦>b◦

B>U◦>b◦ +H>+R
-1
+ y+

]

whose coefficients can form the matrix-vector aggregate that can be factored as A>54A54x and
B>54B54x where

A54x ≡


√
Q

-1
0 0

−U◦C U◦B b◦

0
√
R+

-1
H+

√
R+

-1
y+

 , B54x ≡


Γ Ξ γ

0 U◦
+ b◦+

0 0 0

 ,
and A54 and B54 are the first two block-columns of A54x and B54x, respectively. The
transformation of A54x to the upper-triangular B54x via QR-factorization would update the
SRI pair and yield the triplet (Γt,Ξt, γt) needed to generate the smoother parameters
(
√

∆◦
t , St, δ

◦
t ).
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VIII. Summary and Conclusion

A self-contained derivation of square-root versions of the discrete Kalman filter and RTS
smoother is presented. Introduction of the “boomerang prediction residual” process along with
Lemma III.1 has clarified the connections between the filter and smoother equations, leading
to a stabilized RTS smoother and simplified square-root formulas. The boomerang prediction
residual process is also prominent in linking the square-root information filter (SRIF) with
Dyer-McReynolds Covariance Smoother (DMCS), a lesser known but square-root compatible
version of the RTS smoother. Table 4 summarizes these square-root filter and smoother
algorithms.

Besides the extra steps needed to convert between the square-root forms and
estimate-covariance pair, the square-root formulas for the Kalman filter and RTS smoother
seem to offer only advantages over the standard formulas in regards to computational
complexity, practical realizations, and numerical stability. The key advantages are numerical
guarantee for positive semi-definite covariance matrix, absence of general matrix inverse
(except for back-substitution of triangular matrix), and reduced number of matrix
multiplications. The requirement for large memory to stage the aggregate matrix for QR
factorization is no longer a limiting factor in contemporary computers for most applications.

QR factorization almost single-handedly handles the filter and smoother recursions.
Performance of QR factorization can vary among different algorithmic realizations with
respect to numerical reliability in near-singular cases, for example, by providing high-speed
execution at the cost of reduced checks on singularity. The readers should note that both
variations of the matrix square-roots are used in the presentation: one variant used exclusively
for the covariance matrices (

√
P
√
P
>

) for consistency with their definitions and the other
used for all other matrices (U>U , A>A, etc) for compatibility with QR factorization. The
square roots of the covariance and information matrices are still the inverse of each other as√
P = U -1.

Existence of the Kalman filter and RTS smoother solutions depends on invertibility of Y in (6)
and P∼ in (11), respectively. Quality of the filter and smoother estimates can be monitored
during recursions by checking the numerical condition of these matrices. The square-roots of
these matrices (

√
Y ,
√
P∼) are accessible for monitoring during the filter recursion of the

square-root covariance matrix. The filter recursion for the square-root pair has an additional
requirement for

√
Rt to be invertible for all t to form A1x or A21x, although most applications

in practice satisfy this requirement by having invertible observation error covariance matrices.
SRIF also requires invertibility of

√
Rt for all t and of Ut for t when the filter estimates are

desired. If only the smoother estimates are needed (e.g., [11, 12]), only UT needs to be
invertible. SRIF has a unique flexibility among the presented filters in that the initial condition
(estimate-covariance pair) is optional.
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Table 4. Basic square-root algorithms for the standand Kalman filter and RTS smoother in Table 3.

Square-root Covariance Square-root Pair SRI Pair (SRIF/DMCS)

— Filter Initialization√
P∼
1 =

√
P̄1, x∼

1 = 0
(√

P∼
1

>
, b∼1

)
= (
√
P̄

>
1 , 0) (U∼

1 , b
∼
1 ) = (

√
P̄

-1
1 , 0)

— Filter Recursion ( t = 1, 2, . . . , T )

A>
1 ←−

√
P∼
t A1x ←−

(√
P∼
t

>
, b∼t

)
A4x ←−(U∼

t , b
∼
t )

B>
1 = LQ( A>

1 ) B1x = QR( A1x ) B4x = QR( A4x )√
P ◦
t ⇐ B>

1

(√
P ◦
t

>
, b◦t

)
⇐ B1x (U◦

t , b
◦
t )⇐ B4x

K
√
Y ,
√
Y ⇐ B>

1 † (P ◦
t , x

◦
t )=

√
P ◦
t ·
(√

P ◦
t

>
, b◦t

)
† (
√
P ◦
t , x

◦
t )=U◦

t
-1 ·(I, b◦t )

x◦
t =x∼

t +K
√
Y ·
√
Y

-1
(yt−Htx

∼
t )

• if t = T , end recursion. • if t = T , end recursion. • if t = T , end recursion.

A>
2 ←−

√
P ◦
t A2x ←−

(√
P ◦
t

>
, b◦t

)
A5x ←−(U◦

t , b
◦
t )

B>
2 = LQ( A>

2 ) B2x = QR( A2x ) B5x = QR( A5x )√
P∼
t+1 ⇐ B>

2

(√
P∼
t+1

>
, b∼t+1

)
⇐ B2x (U∼

t+1, b
∼
t+1)⇐ B5x

x∼
t+1 = Ftx

◦
t

‡
√
P∼
t+1, St

√
P∼
t+1 ⇐ B>

2 ‡
√
P∼
t+1,

√
P∼
t+1S

>
t ⇐ B2x ‡Γt, Ξt, γt ⇐ B5x

‡St = St

√
P∼
t+1

√
P∼
t+1

-1 ‡S>
t =

√
P∼
t+1

-1√
P∼
t+1S

>
t ‡

√
∆◦

t = CtΓ
-1
t

‡
√

∆◦
t ⇐ B>

2 ‡
(√

∆◦
t

>
, d◦

t

)
⇐ B2x ‡St =

√
∆◦

t Ξt +Bt

‡ δ◦t = x◦
t − Stx

∼
t+1 ‡ store S> and

(√
∆◦

t

>
, d◦

t

)
‡ δ◦t = −

√
∆◦

t γt

‡ store St,
√

∆◦
t , and δ◦t ‡ store St,

√
∆◦

t , and δ◦t

— Smoother Initialization√
P ?
T =

√
P ◦
T , x?T = x◦

T

(√
P ?
T

>
, b?T

)
=
(√

P ◦
T

>
, b◦T

)
(
√
P ?
T , x

?
T )=U◦

T
-1 ·(I, b◦T )

— Smoother Recursion ( t = T−1, T−2, . . . , 1 )

A>
3 ←−

√
P ?
t+1 A3x ←−

(√
P ?
t+1

>
, b?t+1

)
A>

3 ←−
√
P ?
t+1

B>
3 = LQ( A>

3 ) B3x = QR( A3x ) B>
3 = LQ( A>

3 )√
P ?
t ⇐ B>

3

(√
P ?
t

>
, b?t

)
⇐ B3x

√
P ?
t ⇐ B>

3

P ?
t =

√
P ?
t

√
P ?
t

>
(P ?

t , x
?
t )=
√
P ? ·

(√
P ?
t

>
, b?t

)
P ?
t =

√
P ?
t

√
P ?
t

>

x?t = Stx
?
t+1 + δ◦t x?t = Stx

?
t+1 + δ◦t

† optional steps for generating the filter estimates.

‡ optional steps for preparing the smoother parameters.

“X←− Y ” denotes to “form X including Y as a block”.

“X ⇐ Y” denotes to “extract X from a block in Y”.

”QR” is the unitary transformation using QR factorization.

”LQ” is the unitary transformation using the transposed version of QR factorization.

If smoother is not used, ignore the second columns of A2, B2, A2x, B2x for efficiency.

Any initial condition for SRIF should be converted to additional observations at t = 1.
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APPENDICES

I. Notes from Matrix Algebra

A. Matrix Square-roots and QR Factorization

Any symmetric matrix M has a square-root matrix A such that A>A = M and A is not
unique. The upper triangular matrix B produced by the QR factorization A = ΘB , where Θ is
unitary, is also a square-root of M since M = A>A = B>Θ>ΘB = B>B due to the
defining characteristic of an unitary matrix that Θ>Θ = I . Thus, any square-root of a
symmetric matrix can be converted into an upper-triangular square-root of the same symmetric
matrix using the QR factorization.

The so-called LQ factorization is a transposed version of the QR factorization: A> = B>Θ>

where B> is lower triangular.

B. Schur Complement and Block Matrix Square-root

If a square matrix M has block partitions

M =

[
M11 M12

M21 M22

]

such that M11 is square and invertible, then the matrix N22 = M22 −M21M
-1
11M12 is called

the Schur complement of M11. A block LU decomposition of M exposes N22 [21] as

M =

[
L11 0

L21 I

][
I 0

0 N22

][
U11 U12

0 I

]

noting that L21U12 = L21U11U
-1
11 L

-1
11L11U12 = M21(L11U11) -1M12 = M21M

-1
11M12. If in

addition M is symmetric, the block triangular square-root factors

M =

[ √
M
>
11 0

U>12
√
N
>
22

][ √
M11 U12

0
√
N22

]

would expose the square-root
√
N22 of the Schur complement such that

√
N
>
22

√
N22 = N22.

II. Notes from Estimation Theory

A. Linear Least-squares Estimation and Conditional Gaussian Distribution

If two random vectors x and y have a joint mean-covariance pair[
y

x

]
∼

( [
ȳ

x̄

]
,

[
Pyy Pyx

Pxy Pxx

] )
,
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then the optimal linear estimate of x by y is x̂ = Ay + b that satisfies E [x− x̂] = 0 (unbiased
estimate) and minimizes E [(x− x̂)>(x− x̂)] (least mean-squares error). The zero bias
requirement leads to E [x− x̂] = x̄−Aȳ − b = 0 or b = x̄−Aȳ, which makes the form of the
estimate be

x̂ = x̄+A(y − ȳ).

The associated estimation error becomes x− x̂ = (x− x̄) +A(y − ȳ) and the estimation error
covariance becomes P̂ ≡ E [(x− x̂)(x− x̂)>] = Pxx − PxyA

> −APyx +APyyA
>. To

determine A, the mean-squares error is minimized with respect to A:

d

dA
E [(x− x̂)>(x− x̂)] =

d

dA
trace(P̂ )

= −Pxy − P>yx + 2APyy

= 0

yielding A = PxyP
-1
yy . Thus the optimal linear estimator and the associated estimation error

are

x̂ = x̄+ PxyP
-1
yy (y − ȳ) (43)

P̂ = Pxx − PxyP
-1
yy Pyx (44)

indicating that P̂ is the Schur complement of Pyy .

If the joint distribution of x and y is Gaussian, x̂ and P̂ can be shown to be the mean and
covariance of the conditional Gaussian distribution [13, 18], or

x|y ∼
(
x̄+ PxyP

-1
yy (x− x̄), Pxx − PxyP

-1
yy Pyx

)
.

If the joint distribution is non-Gaussian, the optimal linear estimator may not be equal to the
conditional mean, which is the optimal least-squares estimator among all (linear or non-linear)
estimators.

B. Maximum-likelihood Estimation and Normal Equation

The linear least-squares estimation formulas (43, 44) cannot be applied to cases where the
distribution (mean and covariance) of the variable x is not known prior to observation. In many
of such cases, the distribution function p( y |x ) of the observation y given x is available (often
as Gaussian), and the maximum likelihood estimate x̂ = arg maxx p( y |x ) is sought. In
particular, for the linear Gaussian observation equation

y = Hx+ v, v ∼ (0, R),

the estimate that minimizes the observation error

e(x) ≡ (y −Hx)>R -1(y −Hx)

is sought. Finding the minimum via ∂e(x̂)/∂x = 0 would lead to the so-called normal
equation

(H>R -1H) x̂ = H>R -1y (45)
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that constrains the optimal estimate x̂ linearly. Since H>R -1y = H>R -1Hx+H>R -1v, the
estimation error can similarly be given as L(x− x̂) = −H>R -1v where L = H>R -1H is the
(Fisher) information matrix. The estimation error covariance P̂ = E [(x− x̂)(x− x̂)>] would
then be constrained as

LP̂L = H>R -1E [vv>]R -1H = H>R -1H = L. (46)

If the information matrix is invertible, we have P̂ = L -1 = (H>R -1H) -1 and
x̂ = P̂H>R -1y. If, on the other hand, L is singular, additional observations are needed for
(45, 46) to uniquely specify x̂ and P̂ .

C. Sequential Solutions for the Fixed-interval Smoothing Problem

The solution x?t for the fixed-interval smoothing problem can be derived by combining the
Kalman filter estimates with estimates from another filter that iterates backwards in time [22].
The Markov property of the linear system (1, 2) allows decomposition of the conditional
dependence on the entire observation set Y1:T ≡ {y1, y2, . . . , yT } into two sets: the past plus
current observations Y1:t and the future observations Yt+1:T . In particular, the original
maximum-likelihood formulation for the RTS smoother [10] isolates the filtering problem
p(xt|Y1:t) from the smoothing problem p(xt, xt+1, Y1:T ) as

p(xt, xt+1, Y1:T ) = p(Yt+1:T |xt+1) p(xt+1|xt) p(xt|Y1:t) p(Y1:t)

= p(Yt+1:T |xt+1) p(xt+1, xt, Y1:t)

where both x?t and x?t+1 would be the solutions for maximization of p(xt, xt+1, Y1:T ).
Marginalizing-out xt from the two sides would focus only on x?t+1 as

p(xt+1, Y1:T ) = p(Yt+1:T |xt+1) p(xt+1, Y1:t)

which decomposes the smoothing problem into two estimation problems for
xbt+1 ≡ L[xt+1|Yt+1:T ] and x∼

t+1. As shown in [23], a weighted average of these two
estimates is the smoothed estimate

x?t+1 = W f
t+1 x

∼
t+1 +W b

t+1 x
b
t+1 (47)

where the weights are given by the normalized information (inverse covariance) matrices
associated with the corresponding estimation errors

W f
t+1 = Nt+1(P∼

t+1) -1, W b
t+1 = Nt+1(P b

t+1) -1, N -1
t+1 ≡ (P∼

t+1) -1 + (P b
t+1) -1. (48)

Since W f
t+1 +W b

t+1 = I , the smoother error can be decomposed similarly to (47) as

xt+1 − x?t+1 = W f
t+1 (xt+1 − x∼

t+1) +W b
t+1 (xt+1 − xbt+1). (49)

From the previous section (II.B), the estimation error xt+1 − xbt+1 would be a linear
combination of the observation noise processes v t+1, . . . , vT since xbt+1 is the
maximum-likelihood estimate based on the objective p(Yt+1:T |xt+1) (which requires
co-estimation of w t+1, . . . , wT−1 to reach every observation). Similarly, the estimation error
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xt+1 − x∼
t+1 (and xt − x◦

t ) is a linear combination of v 1, . . . , v t. Because the two sets of
observation noise processes are disjoint,

E [(xt+1 − x∼
t+1)(xt+j − xbt+j)

>] = 0 (50)

E [(xt − x◦
t)(xt+j − xbt+j)

>] = 0 (51)

for j = 1, . . . , T− t.

23 JPL CL#23-1775


	IPN PR 42-233: SQUARE-ROOT FORMULAS FOR KALMAN FILTER, INFORMATION FILTER, AND RTS SMOOTHER: LINKS VIA BOOMERANG PREDICTION RESIDUAL
	I. Introduction
	II. Background
	III. Stabilized Forms
	A. Joseph Stabilized Form
	B. Boomerang Prediction Residual
	C. Stabilized RTS Smoother

	IV. Square-root Covariance Filter and Smoother
	A. Data Update
	B. Time Update and Smoother Parameters
	C. Smoothing

	V. Filter and Smoother with Square-root Pair
	A. Data Update of Square-root Pair
	B. Time Update of Square-root Pair
	C. Smoothing

	VI. Square Root Information Filter
	A. SRIF Data Update
	B. SRIF Time Update
	C. Square-root DMCS

	VII. Combined Data and Time Update
	VIII. Summary and Conclusion
	Acknowledgments
	References
	APPENDICES
	I. Notes from Matrix Algebra
	A. Matrix Square-roots and QR Factorization
	B. Schur Complement and Block Matrix Square-root

	II. Notes from Estimation Theory
	A. Linear Least-squares Estimation and Conditional Gaussian Distribution
	B. Maximum-likelihood Estimation and Normal Equation
	C. Sequential Solutions for the Fixed-interval Smoothing Problem






